

Biochemical markers in preclinical models of osteoporosis

M. G. SØRENSEN¹, K. HENRIKSEN², S. SCHALLER¹, & M. A. KARSDAL³

¹*Pharmos Bioscience A/S, Herlev Hovedgade, Herlev, Denmark*, ²*Nordic Bioscience A/S, Herlev Hovedgade, Herlev, Denmark* and ³*Centre for Clinical and Basic Research A/S, Ballerup Byvej, Ballerup, Denmark*

Abstract

Although several treatments for osteoporosis exist, further understanding of the mode of action of current treatments, as well as development of novel treatments, are of interest. Thus, preclinical models of osteoporosis are very useful, as they provide the possibility for gaining knowledge about the cellular mechanisms underlying the disease and for studying pharmaceutical prevention or intervention of the disease in simple and strictly controlled systems. In this review, we present a comprehensive collection of studies using biochemical markers of bone turnover for investigation of preclinical models of osteoporosis. These range from pure and simple *in vitro* systems, such as osteoclast cultures, to *ex vivo* models, such as cultures of embryonic murine tibiae and, finally, to *in vivo* models, such as ovariectomy and orchidectomy of rats. We discuss the relevance of the markers in the individual models, and compare their responses to those observed using 'golden standard' methods.

Keywords: *Biomarkers, preclinical models, osteoporosis*

(Received 29 September 2006; accepted 16 October 2006)

Introduction

Osteoporosis

Osteoporosis is a large and continuously growing problem worldwide. The number of patients suffering from osteoporosis and other bone diseases is rising due to the increasing lifetime of the elderly population in the industrialised countries (Riggs et al. 1998). Forty per cent of Caucasian women with an age older than 80 years have osteoporosis (Lazner et al. 1999, Rodan & Martin 2000). In men, osteoporosis occurs in approximately 10% of the population in western countries (Looker et al. 1997, Riggs et al. 1998, Kamel 2005).

Osteoporosis often occurs as a consequence of decreased production of gonadal steroids in both men and women resulting in an increase in bone turnover; however, with resorption exceeding formation this leads to pathological bone loss (Riggs et al. 1998). Decreased production of sex hormones is seen in women after menopause,

Correspondence: M. A. Karsdal, Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark. Tel: +45-44525210. Fax: +45-44525251. E-mail: mk@nordicbioscience.com

whereas in men it occurs gradually as the production of sex hormones is reduced with age (Riggs et al. 1998).

Osteoporosis is a systemic skeletal disease characterised by low bone mass and microarchitectural reduction of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk (Rodan & Martin 2000, Cooper 2003). Other causes of osteoporosis include glucocorticoid treatment, smoking and excessive alcohol intake (Scane et al. 1999, Hannan et al. 2000). A less clinically relevant explanation is space flight which, however, still provides useful information about bone loss after reduction of mechanical pressure (Collet et al. 1997, Lang et al. 2004, Iwamoto et al. 2005).

As detailed studies in humans are difficult, time consuming and expensive, preclinical models of osteoporosis are very useful, and they have been used both for studying the molecular and cellular basis of osteoporosis and for testing a high number of compounds for their ability to reduce disease progression. The models range from very simple *in vitro* testing systems for resorption and formation (Baron et al. 1985, Nefussi et al. 1985, Bellows et al. 1986, Nordstrom et al. 1995, Li et al. 1999, Massey & Flanagan 1999, Shalhoub et al. 2000, Karsdal et al. 2003, Rawadi et al. 2003, Ogasawara et al. 2004), to the more complex *ex vivo* systems (Dieudonne et al. 1991, Blavier & Delaisse 1995, Mundy et al. 1999, Engsig et al. 2000a, Chiusaroli et al. 2003, Garrett 2003, Henriksen et al. 2003), and finally to the *in vivo* models, such as the rat ovariectomised (OVX) model, which mimics human osteoporosis to some extent (Vanderschueren et al. 1992, Dempster et al. 1995, Cenci et al. 2000, Wu et al. 2003, Schaller et al. 2004, Karsdal et al. 2005).

Bone turnover and bone cells

The correct maintenance of a healthy skeleton is dependent on bone resorption and bone formation. Loss of regulation of this process leads to pathologies, such as osteoporosis. The main type of cell responsible for bone resorption is the osteoclast (Roodman 1999), whereas the main type of cell responsible for bone formation is the osteoblast (Manolagas 2000, Aubin 2001). The resorption level and the formation level are tightly coupled under normal circumstances, and resorption is always followed by the same amount of formation (Parfitt 1982).

The osteoclasts derive from haematopoietic stem cells, from which they are differentiated into mature, multinuclear bone-resorbing osteoclasts when stimulated with the cytokines, receptor activator of NF κ B ligand (RANKL) and macrophage-colony stimulating factor (M-CSF) (Lacey et al. 1998). The osteoclasts are characterised by the presence of multiple nuclei, a sealing zone and the formation of a ruffled border. Further characteristics of the osteoclasts include the expression of the calcitonin receptor, cathepsin K and tartrate-resistant acid phosphatase (TRACP) (Roodman 1999). The hallmark of osteoclast function is the ability to form a resorption lacuna, which allows the osteoclasts to resorb calcified bone matrix. After having finished bone resorption the osteoclast undergoes apoptosis, and bone formation is initiated (Roodman 1999).

The osteoblasts derive from mesenchymal stem cells, and they are recruited and differentiated into mature bone-forming osteoblasts in the presence of the right stimuli (Aubin 1998a, Aubin 1998b, Manolagas 2000, Aubin 2001). The characteristics of osteoblasts include their cuboidal shape, their ability to produce type I collagen and

the expression of alkaline phosphatase and osteocalcin (Midy & Plouet 1994, Shui & Scutt 2001, Rawadi et al. 2003, Kawazoe et al. 2004, Eghbali-Fatourechi et al. 2005). After bone formation, the osteoblasts either differentiate into osteocytes, become bone-lining cells or undergo apoptosis (Manolagas 2000, Aubin 2001).

Biochemical markers of bone turnover

The biomarkers for bone turnover can be divided into three categories: (1) markers that reflect bone resorption; (2) markers that reflect osteoclast number, and (3) markers that reflect bone formation. Bone resorption markers are different matrix-derived fragments that are generated during the osteoclastic resorption activity, such as the C-terminal cross-linked telopeptide of type I collagen (CTX-I) fragment and the N-terminal telopeptide of type I collagen (NTX) fragment (Hanson et al. 1992, Gertz et al. 1998, Rosenquist et al. 1998, Karsdal et al. 2003), which are both generated mainly by cathepsin K produced by the osteoclasts. Measurement of the deoxypyridinolines (DPYR/DPD), pyridinolines (PYR) and hydroxyprolines also reflects bone resorption; although DPYR and PYR are collagen type I fragments they are less sensitive markers of bone resorption than CTX-I and NTX (Okabe et al. 2004). Also, hydroxyprolines are less specific compared to CTX-I and NTX as they are released from all types of collagen (Chaki et al. 2000, Liesegang 2003). In addition, the matrix metalloproteinase (MMP)-generated C-terminal telopeptide of type I collagen (ICTP) fragment can be used to monitor bone resorption under certain circumstances, such as the resorption induced by bone metastasis, whereas it does not reflect increase in resorption seen in osteoporosis (Okabe et al. 2004, Leeming et al. 2006), probably because the MMPs do not play a major role in osteoclast-mediated resorption under osteoporotic conditions (Henriksen et al. 2006).

Markers that reflect osteoclast number are TRACP and, potentially, cathepsin K, which are enzymes produced and released into the circulation by the osteoclasts (Drake et al. 1996, Gelb et al. 1996, Halleen et al. 1998, Gowen et al. 1999, Halleen et al. 1999, 2000). The most well-characterised osteoclast marker is TRAP5b, which is a subset of the total TRACP only produced by the osteoclasts (Alatalo et al. 2003). Cathepsin K is still undergoing evaluation as an osteoclast marker (Meier et al. 2006) and further analysis will show whether it correlates to resorptive activity or osteoclast number.

The bone formation markers can be divided into two categories: (1) proteins, which reflect increased osteoblast differentiation, and thereby indicate increased bone formation, such as bone-specific alkaline phosphatase (BSAP) and osteocalcin (Brown et al. 1984, Delmas et al. 1985, Rosenquist et al. 1995, Broyles et al. 1998, Gundberg 2000, Peretz et al. 2003), or (2) fragments of pro-collagen, which are released during collagen incorporation into the newly formed bone matrix, and thereby directly reflect bone formation, such as the N-terminal and C-terminal pro-fragments of type I collagen, PINP and PICP, respectively, (Parfitt et al. 1987b, Suvanto-Luukkonen et al. 1997). Figure 1 and Table I summarise the origin of the different biochemical markers discussed in this review.

These markers often provide fast, sensitive and dynamic measurements of the different aspects of bone turnover. Furthermore, they often correlate to the 'golden standard' methods, such as various histomorphometrical indices (Visentin et al. 2000, Lark et al. 2002, Gopala et al. 2003, Schaller et al. 2004). In addition, CTX-I levels

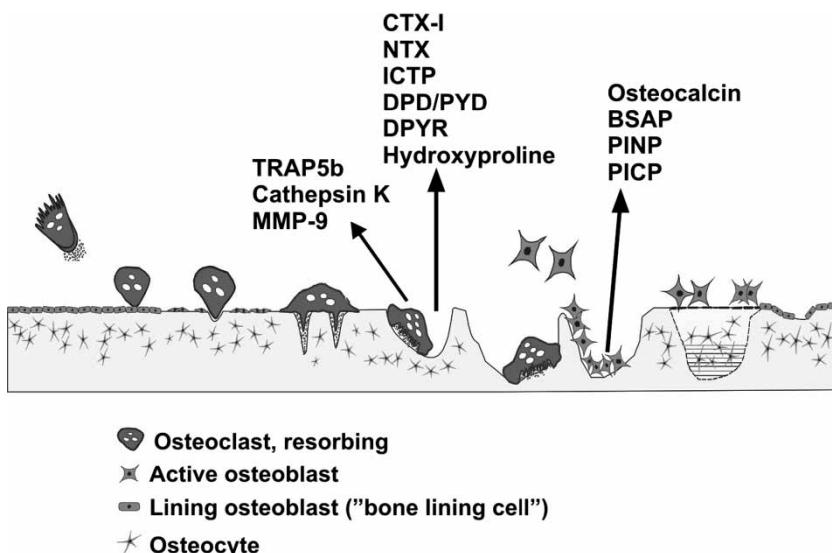


Figure 1. Schematic illustration of the origin of the markers. The figure illustrates that osteoclasts during resorption release CTX-I, NTX, DPYR/DPD/PYR, ICTP and hydroxyprolines from the bone matrix. cathepsin K and TRAP5b are released from the osteoclasts themselves. Osteocalcin and BSAP are secreted by bone forming osteoblasts and are indicative of bone formation. The pro-collagen fragments PINP and PICP are released during the incorporation of collagen into the bone matrix by the mature bone forming osteoblasts, and reflect bone formation.

have been shown to be an independent risk predictor for fractures, and thus the markers can also provide information about bone quality (Chapurlat et al. 2000, Garnero et al. 2000).

In this review, we will provide a description of various preclinical models including *in vitro*, *ex vivo* and *in vivo* models. We will focus on how biochemical markers can be used and to what extent they correlate to the validated measurements, such as histomorphometry, histology and strength tests.

***In vitro* models**

Osteoclasts and bone resorption

The main function of osteoclasts is to resorb bone. Measurements of resorption can be done by two assays: (1) a direct evaluation of the pit area and volume of resorbed bone by stereology and/or scanning electron microscopy (Parikka et al. 2001, Henriksen et al. 2004, Schaller et al. 2004), or (2) measurement of the release of fragments of the organic matrix during the resorption, such as CTX-I, which is generated by the activity of cathepsin K (Apone et al. 1997, Parikka et al. 2001, Karsdal et al. 2003, Henriksen et al. 2004, Schaller et al. 2004, Henriksen et al. 2005, 2006). In addition measurement of hydroxyproline released into the cell culture supernatant can also be used to monitor resorptive activity (Yasuma et al. 1998, Furuyama & Fujisawa 2000). Both the measurement of biochemical markers and the evaluation of the pit area are commonly used to evaluate the resorptive activity of the osteoclasts. However, both assays have limitations as the first method evaluates the resorbed surface and the second the volume of collagen matrix resorbed, although in most cases these two

Table I. Origin of the biochemical markers.

Marker	Biochemical process	Description	References
CTX-I	Bone resorption	C-terminal cross-linked telopeptide of type I collagen. CTX-I is generated by cathepsin K and released during osteoclastic bone resorption.	(Rosenquist <i>et al.</i> 1998; Schaller <i>et al.</i> 2004; Henriksen <i>et al.</i> 2004)
NTX	Bone resorption	N-terminal telopeptide of type I collagen. NTX-I is generated by cathepsin K and released during osteoclastic bone resorption.	(Gertz <i>et al.</i> 1998; Hanson <i>et al.</i> 1992)
ICTP	Bone resorption in some cases	C-terminal telopeptide of type I collagen. ICTP is generated by MMPs and is released during bone resorption in special cases, such as bone metastases.	(Garnero <i>et al.</i> 2003; Leeming <i>et al.</i> 2006; Okabe <i>et al.</i> 2004)
DPD/DPYR/ PYD	Bone resorption	Deoxypyridinolines (DPD/DPYR) and pyridinolines (PYD) are found in mature collagen and are released during bone resorption.	(Seyedin <i>et al.</i> 1993; Robins <i>et al.</i> 1994)
Hydroxyproline	Bone resorption	Hydroxyprolines are found in the triple helices of collagen, and they are released during resorption.	(Liesegang 2003)
TRAP5b	Osteoclast number	Tartrate-resistant acid phosphatase (TRACP) is a family of enzymes, where TRAP5b is specifically produced by the osteoclasts	(Halleen <i>et al.</i> 1998; Halleen <i>et al.</i> 1999; Halleen <i>et al.</i> 2000; Alatalo <i>et al.</i> 2003)
Cathepsin K	Osteoclast number ^a	Cathepsin K is the essential protease for collagen type I degradation, and it is mainly produced by osteoclasts	(Meier <i>et al.</i> 2006)
Osteocalcin	Bone formation	Osteocalcin is a bone-specific protein produced by the osteoblast and inserted into the bone matrix.	(Delmas <i>et al.</i> 1985; Brown <i>et al.</i> 1984; Rosenquist <i>et al.</i> 1995)
BSAP	Osteoblast differentiation	Bone-specific alkaline phosphatase is an enzyme, which is an early marker of osteoclastogenesis.	(Peretz <i>et al.</i> 2003; Broyles <i>et al.</i> 1998; Gundberg 2000)
PINP/PICP	Bone formation	The C- and N-terminal propeptides of type I collagen. The propeptides are released from newly synthesised pre-procollagen prior to the incorporation of collagen molecules into the bone matrix.	(Parfitt <i>et al.</i> 1987b; Suvanto-Luukkonen <i>et al.</i> 1997)

^aUnder investigation.

measurements will correlate well (Henriksen *et al.* 2004, Schaller *et al.* 2004). On the other hand, the markers have two major advantages as they can provide dynamic data and the measurements are not as time consuming as the stereological scoring of resorption pits.

Measuring the TRACP activity or the level of TRAP5b in the supernatants reflects osteoclast numbers in cell cultures (Ylipahkala *et al.* 2005a). These measurements will

in most cases provide the osteoclast number, although TRACP activity is sensitive to some resorption inhibitors, probably due to processing of TRACP by cathepsin K (Ljusberg et al. 2005, Ylipahkala et al. 2005b). Finally, measurement of cathepsin K levels will probably predict osteoclast number, but may also indicate the activity. Published data demonstrate that the cathepsin K levels are increased in postmenopausal women, and the cathepsin K levels are reduced by bisphosphonate therapy (Holzer et al. 2005, Meier et al. 2006). However, as both these conditions are associated with both changes in osteoclast numbers and activity (Rodan & Martin 2000, Rodan 2003), there is no clear-cut answer to whether cathepsin K levels reflect osteoclast activity or number.

Osteoblasts and bone formation

The differentiation of mesenchymal stem cells into bone-forming osteoblasts can be done in the presence of β -glycerophosphate and ascorbic acid (Nefussi et al. 1985, Bellows et al. 1986). Studies of the factors involved in osteoblast differentiation (Rawadi et al. 2003, de Jong et al. 2004, Ogasawara et al. 2004) as well as enzymatic systems involved in osteoblast maturation, function and survival (Karsdal et al. 2001, 2002, 2004) can be performed using this method.

The most common assays for studying aspects of osteoblast biology are measurement of alkaline phosphatase activity as a marker for early stages of differentiation (Midy & Plouet 1994, Shui & Scutt 2001, Rawadi et al. 2003). Furthermore, the expression of the osteocalcin is also a characteristic of the development of bone-forming osteoblast (Eghbali-Fatourechi et al. 2005, Shaama 2005). During bone formation, pro-fragments type I collagen, such as PICP and PINP are released and can be measured in supernatants of cultured osteoblasts, thereby providing additional tools for studies of osteoblasts (Palosaari et al. 2001, Torricelli et al. 2002).

The 'golden standard' methods for *in vitro* measurement of osteoblast-mediated bone formation are measurement of alizarin red accumulation and Von Kossa staining, which, respectively, measure the amount of phosphate and calcium deposited in the newly formed bone (Nefussi et al. 1985, Bellows et al. 1986, Rawadi et al. 2003, Kawazoe et al. 2004). However, combining these static methods with dynamic measurement of the various biochemical markers will provide a more detailed picture of different aspects of osteoblast biology, such as differentiation.

Ex vivo models

Resorption

In vivo osteoclasts are embedded in the matrix, which most likely will influence their biology. However, as *in vivo* models are expensive and time-consuming models for studying osteoclast activity, *ex vivo* models for bone culture systems have been developed. To study osteoclast development and function three *ex vivo* models are generally used. These are the murine metatarsal model, which is a development model, and the tibia and calvaria models, which are resorption models (Dieudonne et al. 1991, Corboz et al. 1992, Hofstetter et al. 1992, Henriksen et al. 2003, Leloup et al. 1994, Blavier & Delaisse 1995, Engsig et al. 2000a, Engsig et al. 2000b). Originally, all three models were based on radiolabelling, where pregnant mice were labelled with $^{45}\text{Ca}^{2+}$ and bones from the embryos were isolated. The resorption was

then followed by quantification of $^{45}\text{Ca}^{2+}$ release into the culture medium (Blavier & Delaisse 1995, Engsig et al. 2000a). Recently, it was demonstrated that measurement of the cathepsin K-generated CTX-I fragment could replace the use of radioactive $^{45}\text{Ca}^{2+}$ (Garnero et al. 2003). In addition, the ICTP fragment also reflected resorption to some extent (Garnero et al. 2003), as this fragment is generated by MMP activity and only reflects the resorption level under special circumstances (Nishi et al. 1999, Okabe et al. 2004, Henriksen et al. 2006, Leeming et al. 2006).

In the metatarsals model, the osteoclastic resorption is represented as the release of $^{45}\text{Ca}^{2+}$ into the culture medium. A characteristic of this model is that the release of $^{45}\text{Ca}^{2+}$ is dependent on differentiation and recruitment of osteoclasts into the developing site in the marrow (Dieudonne et al. 1991, Blavier & Delaisse 1995). Furthermore, the bone resorption and recruitment of the osteoclasts can in the metatarsals model be investigated histologically (Leloup et al. 1994, Blavier & Delaisse 1995, Engsig et al. 2000a,b). However, this model is based on resorption of the calcified cartilage present in the bone rudiments before marrow cavity formation, which contains both type I collagen and type II collagen (Blavier & Delaisse 1995). Thus, combining CTX-I and CTX-II will most likely reflect the actual resorption level (Hoegh-Andersen et al. 2004, Ishikawa et al. 2004, Sondergaard et al. 2006a,b).

The tibia and the calvaria models directly detect bone resorption (Dieudonne et al. 1991, Engsig et al. 2000a, Lacey et al. 2000), as they are based on the presence of mature resorbing osteoclasts. The difference between the two models lies in the bone type evaluated. The tibia model is a model for long bone, while the calvaria model is for flat bone (Dieudonne et al. 1991, Corboz et al. 1992, Hofstetter et al. 1992, Everts et al. 1999, Engsig et al. 2000a, Lacey et al. 2000, Chiusaroli et al. 2003, Garnero et al. 2003, Henriksen et al. 2003, Shorey et al. 2004). In these models the resorptive activity can be quantified by measuring the CTX-I or the ICTP level (Garnero et al. 2003).

In conclusion, the resorption markers can be used for studying resorption in the *ex vivo* models, which reflect osteoclast-mediated bone resorption, and are therefore very useful for studying both biological phenomena and pharmacological intervention in the *ex vivo* systems.

Bone formation

Bone formation can be studied *ex vivo* by using murine calvarias. Calvarias are isolated from 4-day-old mice and cultured for 3–7 days. Hereafter, the bone formation can be evaluated histologically (Traianedes et al. 1998, Mundy et al. 1999, Garrett et al. 2003, Garrett 2003). Furthermore, early stages of osteoblast differentiation can also be monitored using alkaline phosphatase (ALP) measurement in this assay (P. Hoegh-Andersen, Pharmos Bioscience, unpublished data). Finally, it would be of interest to be able to measure osteocalcin levels or type I collagen production, as a measurement of bone formation in this assay. However, whether these methods are applicable is currently not known, although it is likely as these markers can be measured in supernatants from *in vitro* cultures (Palosaari et al. 2001, Torricelli et al. 2002, Eghbali-Fatourechi et al. 2005, Shaama 2005).

A similar local bone formation assay can be performed *in vivo* using local injections of a desired compound into murine calvarias over a short period of time. This method is normally analysed using histomorphometry (Mundy et al. 1999, Garrett et al.

2003), and whether bone turnover markers will reflect the local changes in bone formation remains to be determined.

In conclusion, bone formation models *ex vivo* and *in vivo* are very useful methods and further development of the existing bone formation markers is likely to provide robust and rapid tools for studying these models.

***In vivo* models**

Models of osteoporosis

Models for studying different forms of osteoporosis, such as glucocorticoid-induced osteoporosis, hypercalcaemia induced by retinoic acid treatment of thyroparathyroidectomized (TPTX) rats (Trechsel et al. 1987) and transgenic mouse models which also mimic osteoporosis, such as osteoprotegerin knockout mice, are numerous (Simonet et al. 1997, Bucay et al. 1998, Schilling et al. 2001, Priemel et al. 2002, Pogoda et al. 2005). However, two of the most commonly used models, are the models for studying osteoporosis reflecting the disease caused by loss of gonadal function. Ovariectomy (OVX) of female rats and mice is used to mimic postmenopausal osteoporosis in women (Dempster et al. 1995, Cenci et al. 2000, Roggia et al. 2001, Gao et al. 2004, Schaller et al. 2004, Karsdal et al. 2005). In male animals, orchidectomy (ORX) is used to mimic osteoporosis in men (Vanderschueren et al. 1992, Weinstein et al. 1997, Onoe et al. 2000, Erben 2001, Wu et al. 2003).

Both OVX and ORX lead to a decreased production of sex steroids, which subsequently leads to a rapid change in the bone turnover, characterised by both higher bone resorption and formation, although the increase in bone formation is lower than the increase in resorption (Wakley et al. 1991, Vanderschueren et al. 1992, Turner et al. 1993, Ke et al. 1998, Baldock et al. 1999, Rico et al. 2000, Bauss et al. 2002). These models are commonly used to study both the biological background of osteoporosis and potential treatments for the diseases (Nuttall et al. 1998, Visentin et al. 2000, Ke et al. 2001, Lark et al. 2002, Schaller et al. 2004, Karsdal et al. 2005).

Monitoring treatment effects is easily done using biomarkers of osteoblastogenesis and thereby bone formation, such as osteocalcin and BSAP (Gopala et al. 2003, Karsdal et al. 2005), whereas the pro-collagen fragments PINP and PICP cannot be used owing to species specificity. Furthermore, biomarkers of osteoclast number, such as TRACP (Karsdal et al. 2005, Rissanen et al. 2005b), and markers of osteoclast-mediated bone resorption such as DPD, PYR, NTX and CTX-I (Visentin et al. 2000, Schaller et al. 2004, Karsdal et al. 2005), can all be measured in either serum, urine or both (Karsdal et al. 2005).

Several studies have used biochemical markers of bone turnover to follow the response to treatment in different preclinical models of osteoporosis. The studies include oestradiol, various bisphosphonates, calcitonin and a group of novel drugs including inhibitors of the V-ATPase, ClC-7 and cathepsin K inhibitors and anti-RANKL therapy (see Table II).

The findings from study to study using the same drug, such as oestradiol, are generally consistent with the application of the marker, e.g. both CTX, PYR and TRACP levels are decreased when using oestradiol, reflecting the decreased resorption and decreased osteoclast number observed using this treatment (Frolík et al. 1996, Srivastava et al. 2000, 2002). In addition, the oestradiol-mediated

Table II. Bone markers used in preclinical osteoporosis models.

Target	Class of drug	Name of drug	Marker	References
Estrogen receptors	Estrogen agonists	Estradiol	TRACP	(Srivastava <i>et al.</i> 2002)
Estrogen receptors	Estrogen agonists	Estradiol	Osteocalcin	(Srivastava <i>et al.</i> 2000)
			CTX-I	
Estrogen receptors	Estrogen agonists	Estradiol	Osteocalcin	(Frolík <i>et al.</i> 1996)
			PYR	
Osteoclasts	Bisphosphonates	Zoledronate	Osteocalcin	(Glatt <i>et al.</i> 2004)
			PYR	
Osteoclasts	Bisphosphonates	Incadronate	Osteocalcin	(Teramura <i>et al.</i> 2002)
			PYR	
Osteoclasts	Bisphosphonates	Alendronate	TRACP	(Srivastava <i>et al.</i> 2002)
Osteoclasts	Bisphosphonates	Clodronate	Osteocalcin	(Kippo <i>et al.</i> 1998)
			ALP	
			DPD	
Calcitonin receptor	Calcitonin	Calcitonin	Hydroxyprolines	(Davey & Morris 2005)
RANKL	Anti-RANKL	OPG	BSAP TRACP	(Valenta <i>et al.</i> 2005)
V-ATPase	V-ATPase inhibitor	FR167356	DPYR	(Niikura <i>et al.</i> 2005)
V-ATPase	V-ATPase inhibitor	SB 242784	DPD PYR	(Visentin <i>et al.</i> 2000)
CIC-7	CIC-7 inhibitor	NS3736	CTX-I Osteocalcin	(Schaller <i>et al.</i> 2004)
CIC-7	CIC-7 inhibitor	NS3696	TRACP DPYR	(Karsdal <i>et al.</i> 2005)
Cathepsin K	Cathepsin K inhibitor	SB 331750	DPYR	(Lark <i>et al.</i> 2002)

impairment of bone formation seen as a consequence of the coupling, is reflected in the bone formation marker osteocalcin (Frolík *et al.* 1996, Srivastava *et al.* 2000).

A second example of the normally robust correlations between marker responses in different studies, is the study of CIC-7 inhibitors in the OVX rat model (Schaller *et al.* 2004, Karsdal *et al.* 2005). These studies show stable reductions in the resorption markers CTX-I and DPYR using two different inhibitors, and in addition both studies also observed that the osteocalcin levels were unaltered by the treatment (Schaller *et al.* 2004, Karsdal *et al.* 2005).

Thus, in general, the studies using the same class of inhibitors observe consistent results, and most of the differences are explained rather by differences in the individual experiment, such as age of the animals or dosing procedure, than by instability in the marker measurements.

The use of biomarkers is constantly being validated with reference to the more laborious histomorphometrical methods (Visentin *et al.* 2000, Schaller *et al.* 2004). In addition, in most cases, biochemical markers are used in combination with DXA, MR or CT scans, which provide both invasive and non-invasive measurements of bone structure and mass that the markers cannot supply (Bollerslev & Andersen Jr. 1989, Takahashi *et al.* 1999, Jiang *et al.* 2000, Binkley *et al.* 2003, Hornby *et al.* 2003, Iida-Klein *et al.* 2003, Munns *et al.* 2004). Furthermore, the labour-intensive histomorphometrical methods are often used to provide information about the dynamics of bone turnover in the different cases (Visentin *et al.* 2000, Stroup *et al.* 2001, Lark *et al.* 2002, Schaller *et al.* 2004). The methods for evaluating the strength of the bones, and thereby indicating the quality of the bones, are based on invasive techniques, such as three- and four-point bending tests and compression tests (Kang *et al.* 1998, Ke *et al.* 2000, 2001, Bauss *et al.* 2002, Schaller *et al.* 2004). Prediction of bone strength using non-invasive methods is difficult; however, measurement of bone mineral density (BMD) has been shown to be an individual and independent risk

predictor for fractures (Chapurlat et al. 2000, Garnero et al. 2000). Interestingly, measurement of CTX-I was also shown to be an individual and independent risk predictor for fractures and the outcome of treatment with respect to quality (Garnero et al. 1998). In addition, combination of BMD and CTX-I measurements provided a good prediction of fracture risk (Garnero et al. 1998, Chapurlat et al. 2000, Garnero et al. 2000). Furthermore, recent evidence has shown that bone turnover markers can reflect whether a given treatment will increase bone strength (Schaller et al. 2004).

For all the measurements described, such as biochemical markers, histomorphometry and DXA scanning, there are advantages and disadvantages. The markers have two main advantages: they are easily obtained from blood or urine and the measurements can be done dynamically. The major disadvantage with the markers is that they are not all fully validated, and, thus, a secondary measurement such as histomorphometry is required (Gopala et al. 2003, Schaller et al. 2004). In contrast, using dynamic histomorphometry is labour intensive, but the result is validated and the information is detailed, although it requires termination of the animals. However, it should be mentioned that in most cases, the biochemical markers correlate with the histomorphometrical data (Visentin et al. 2000, Gopala et al. 2003, Schaller et al. 2004).

The different scanning techniques provide good structural data, and some of them can be used dynamically to monitor changes in structure; however, the problem with the structural data, is that they do not always correlate very well to strength measurements (Bollerslev & Andersen Jr. 1989, Binkley et al. 2003, Hornby et al. 2003, Iida-Klein et al. 2003). The use of biomechanical testing is very useful, as a combination of these techniques will provide the strength of individual bone compartments, such as both the bending strength of the femur, and the compression strength of the vertebral body (Ke et al. 2000). The problem with these measurements is that they are not dynamic, and for obvious reasons they will never be applicable in clinical trials. Thus, all the different methods provide useful data; however, all have their drawbacks as well, and it still remains to be seen whether any non-invasive measurement can provide a robust indication of bone strength. A summary of the advantages and disadvantages of the different methods for analysis of *in vivo* models for osteoporosis is shown in Table III.

In conclusion, bone turnover markers are very useful for monitoring the *in vivo* osteoporosis models, providing dynamic and sensitive measurements of bone turnover and, in many cases, they reflect measurements of histomorphometric indices, and therefore can save time and money.

Conclusions

This review has focused on the use of bone turnover markers in preclinical models of osteoporosis ranging from very simple and easily interpretable *in vitro* models to the more complicated *ex vivo* models and, finally, the *in vivo* models used to study the treatments under development for osteoporosis. In the *in vitro* resorption models, measurement of CTX-I release, in most cases, reflects the total osteoclastic resorption activity, and correlates to the pit volume (Henriksen et al. 2004, Schaller et al. 2004). Measuring CTX-I release under either non-treated circumstances or using anti-resorptives, such as bisphosphonates or acidification inhibitors, will accurately reflect the resorptive activity of the osteoclasts (Henriksen et al. 2004, Schaller et al. 2004,

Table III. Advantages and disadvantages of biochemical markers compared to other assays for analysis of *in vivo* models.

	Method	Advantages	Disadvantages	References
Turnover	Markers	Blood/urine =easy, dynamic, correlate with histomorphometry	Not all are generally accepted	(Karsdal et al. 2005; Schaller et al. 2004; Gopala, V et al. 2003; Visentin et al. 2000; Lark et al. 2002)
	Histomorphometry	Validated, detailed information, dynamic	Labor-Internationalensive	
Structure	DXA scanning	Non-invasive/dynamic	High density does not imply strength, does not always correlate to strength	(Iida-Klein et al. 2003; Binkley et al. 2003; Hornby et al. 2003)
	QCT/microCT scanning	Detailed scan, better for strength than DXA,	Termination of animals, not dynamic, does not always correlate to strength	
	MR scanning	High resolution, dynamic measurement	Expensive, does not always correlate to strength	
Biomechanical	Compression	Strength, trabecular bone	Not dynamic	(Ke et al. 2000; Ke et al. 2001; Bauss et al. 2002)
	Bending	Strength	Not dynamic, mainly cortical bone	
	Indentation	Strength, trabecular bone	Not dynamic	

Karsdal et al. 2005, Ylipahkala et al. 2005a). Finally, the major advantage of the markers is that they can be measured dynamically during resorption experiments and therefore provide additional information, such as reversibility of an effect, loss of sensitivity to a treatment and fast responses to treatment, when compared to endpoint measurements of pit area, number and volume.

In vitro bone formation measurements are mainly confined to measuring ALP activity in the cell lysates and supernatants, although calcium deposition can also be measured (Midy & Plouet 1994, Shui & Scutt 2001, Rawadi et al. 2003). Studies using dynamic measurement of osteocalcin, PICP and PINP are still few (Palosaari et al. 2001, Torricelli et al. 2002, Shaama 2005, Eghbali-Fatourechi et al. 2005). However, we believe that use of the biomarkers will increase, as they supply easily accessible information.

In the *ex vivo* models, the resorption marker CTX-I reflects osteoclast activity quite well; however, as both cathepsin K and MMPs are involved in resorption of the developing bones in these models the marker ICTP, which reflects MMP-generated collagen fragments, can also be used (Garnero et al. 2003), and both of these correlate to analyses of $^{45}\text{Ca}^{2+}$ release (Garnero et al. 2003). The *ex vivo* formation model and the local *in vivo* formation model have not been studied in great detail with respect to bone formation markers, although ALP activity can be used for the *ex vivo* model (P. Hoegh-Andersen, Pharmos Bioscience, unpublished data). The results obtained in the models are normally obtained using histomorphometry and histology, which are time-consuming approaches, and therefore there is a need for formation markers which will allow dynamic and detailed quantification of responses to treatment in the models. It should be noted that whether the existing bone formation markers can measure the locally induced formation in the *in vivo* calvaria model is not known.

In vivo models of osteoporosis are routinely used for understanding the disease pathology and for testing potential new treatments. The classical analysis methods for the models are BMD, bone mineral content (BMC) measurements, strength tests and both static and dynamic histomorphometric indices as well as several other tests (Bollerslev & Andersen Jr. 1989, Kang et al. 1998, Barbier et al. 1999, Takahashi et al. 1999, Jiang et al. 2000, Binkley et al. 2003, Hornby et al. 2003, Iida-Klein et al. 2003, Munns et al. 2004). In recent years, the use of bone turnover markers has increased due to the increased numbers of tests available, but also due to the increased validation of the different markers (Schaller et al. 2005). The value of the markers has also increased as measurements of bone formation and bone resorption using histomorphometry can be reflected to a high extent by the measurement of the respective markers (Visentin et al. 2000, Stroup et al. 2001, Lark et al. 2002, Schaller et al. 2004), and thus these can save important time in the development of new drugs. In addition, measurement of osteoclast numbers using TRAP5b provides additional important information (Rissanen et al. 2005b), and the ratio between CTX-I and TRAP5b provides a resorption index for the individual osteoclast, and thereby provides very useful knowledge for investigators testing anti-resorptives for osteoporosis (Rissanen et al. 2005a, 2005b).

Furthermore, the bone formation markers also provide very useful information in the different studies; in particular, recent studies have indicated that the coupling between resorption and formation can be attenuated using certain anti-resorptive therapies, and thus the bone formation can be maintained (Schaller et al. 2004, Karsdal et al. 2005). These studies, and the studies focusing on characterising the

anabolic effects of parathyroid hormone (PTH) (Liu et al. 1991, Dempster et al. 1993, Shen et al. 2000), are using the bone formation markers extensively, and the markers provide useful information with respect to gaining knowledge on the further development of the different drugs.

In summary, biochemical markers of bone turnover are very useful for assessing response to treatment, onset and progression of disease pathology, specific cellular activities and especially dynamic information in preclinical models for osteoporosis, and thereby provide stable and easy access to important information in these models. However, there are still limitations with respect to their use in the different models and with respect to the validation of some of the markers, but these are areas undergoing intense investigation and these issues will likely be solved sooner rather than later.

References

- Alatalo SL, Peng Z, Janckila AJ, Kaija H, Vihko P, Vaananen HK, Halleen JM. 2003. A novel immunoassay for the determination of tartrate-resistant acid phosphatase 5b from rat serum. *Journal of Bone and Mineral Research* 18:134–139.
- Apone S, Lee MY, Eyre DR. 1997. Osteoclasts generate cross-linked collagen N-telopeptides (NTx) but not free pyridinolines when cultured on human bone. *Bone* 21:129–136.
- Aubin JE. 1998a. Advances in the osteoblast lineage. *Biochemistry and Cell Biology* 76:899–910.
- Aubin JE. 1998b. Bone stem cells. *Journal of Cell Biochemistry Supplement* 30–31:73–82.
- Aubin JE. 2001. Regulation of osteoblast formation and function. *Reviews in Endocrine & Metabolic Disorders* 2:81–94.
- Baddeley AJ, Gundersen HJ, Cruz-Orive LM. 1986. Estimation of surface area from vertical sections. *Journal of Microscopy* 142:259–276.
- Baldock PA, Need AG, Moore RJ, Durbridge TC, Morris HA. 1999. Discordance between bone turnover and bone loss: effects of aging and ovariectomy in the rat. *Journal of Bone and Mineral Research* 14:1442–1448.
- Barbier A, Martel C, De Verneuil MC, Tirode F, Nys M, Mocaer G, Morieux C, Murakami H, Lacheretz F. 1999. The visualization and evaluation of bone architecture in the rat using three-dimensional X-ray microcomputed tomography. *Journal of Bone and Mineral Metabolism* 17:37–44.
- Baron R, Neff L, Louvard D, Courtoy PJ. 1985. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. *Journal of Cell Biology* 101:2210–2222.
- Bauss F, Lalla S, Ende R, Hothorn LA. 2002. Effects of treatment with ibandronate on bone mass architecture biomechanical properties and bone concentration of ibandronate in ovariectomized aged rats. *Journal of Rheumatology* 29:2200–2208.
- Bellows CG, Aubin JE, Heersche JN, Antosz ME. 1986. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. *Calcified Tissue International* 38:143–154.
- Binkley N, Dahl DB, Engelke J, Kawahara-Baccus T, Krueger D, Colman RJ. 2003. Bone loss detection in rats using a mouse densitometer. *Journal of Bone and Mineral Research* 18:370–375.
- Blavier L, Delaisse JM. 1995. Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. *Journal of Cell Science* 108:3649–3659.
- Bollerslev J, Andersen PE Jr. 1989. Fracture patterns in two types of autosomal-dominant osteopetrosis. *Acta Orthopaedica Scandinavica* 60:110–112.
- Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ. 1984. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. *Lancet* 1:1091–1093.
- Broyles DL, Nielsen RG, Bussett EM, Lu WD, Mizrahi IA, Nunnally PA, Ngo TA, Noell J, Christenson RH, Kress BC. 1998. Analytical and clinical performance characteristics of Tandem-MP Ostase: a new immunoassay for serum bone alkaline phosphatase. *Clinical Chemistry* 44:2139–2147.
- Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan L, Xu W, Lacey DL, Boyle J, Simonet WS. 1998. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. *Genes & Development* 12:1260–1268.

- Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R. 2000. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. *Journal of Clinical Investigations* 106:1229–1237.
- Chaki O, Yoshikata I, Kikuchi R, Nakayama M, Uchiyama Y, Hirahara F, Gorai I. 2000. The predictive value of biochemical markers of bone turnover for bone mineral density in postmenopausal Japanese women. *Journal of Bone and Mineral Research* 15:1537–1544.
- Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD. 2000. Serum estradiol and sex hormone-binding globulin and the risk of hip fracture in elderly women: the EPIDOS study. *Journal of Bone and Mineral Research* 15:1835–1841.
- Chiusaroli R, Sanjay A, Henriksen K, Engsig MT, Horne WC, Gu H, Baron R. 2003. Deletion of the gene encoding c-Cbl alters the ability of osteoclasts to migrate delaying resorption and ossification of cartilage during the development of long bones. *Developmental Biology* 261:537–547.
- Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, Alexandre C. 1997. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. *Bone* 20:547–551.
- Cooper C. 2003. Epidemiology of osteoporosis. In: The American Society for Bone and Mineral Research's Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. New York: Lippincott-Raven. p. 307–314.
- Corboz VA, Cecchini MG, Felix R, Van Der Fleisch HPG, Lowick CW. 1992. Effect of macrophage colony-stimulating factor on *in vitro* osteoclast generation and bone resorption. *Endocrinology* 130:437–442.
- Davey RA, Morris HA. 2005. The effects of salmon calcitonin-induced hypocalcemia on bone metabolism in ovariectomized rats. *Journal of Bone & Mineral Metabolism* 23:359–365.
- De Jong DS, Steegenga WT, Hendriks JM, Van Zoelen EJ, Olije W, Dechering KJ. 2004. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells. *Biochemical and Biophysical Research Communications* 320:100–107.
- Delmas PD, Malaval L, Arlot ME, Meunier PJ. 1985. Serum bone Gla-protein compared to bone histomorphometry in endocrine diseases. *Bone* 6:339–341.
- Dempster DW, Birchman R, Xu R, Lindsay R, Shen V. 1995. Temporal changes in cancellous bone structure of rats immediately after ovariectomy. *Bone* 16:157–161.
- Dempster DW, Cosman F, Parisien M, Shen V, Lindsay R. 1993. Anabolic actions of parathyroid hormone on bone. *Endocrine Review* 14:690–709.
- Dieudonne SC, Foo P, Van Zoelen EJ, Burger EH. 1991. Inhibiting and stimulating effects of TGF-beta 1 on osteoclastic bone resorption in fetal mouse bone organ cultures. *Journal of Bone and Mineral Research* 6:479–487.
- Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M. 1996. Cathepsin K but not cathepsins B L or S is abundantly expressed in human osteoclasts. *Journal of Biological Chemistry* 271:12511–12516.
- Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S. 2005. Circulating osteoblast-lineage cells in humans. *New England Journal of Medicine* 352:1959–1966.
- Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkildsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM. 2000a. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment of developing long bones. *Journal of Cell Biology* 151:879–889.
- Engsig MT, Kirkegaard T, Henriksen K, Pedersen AC, Ovejero MC, Birkedal-Hansen HK, Foged NT, Delaisse JM. 2000b. Osteoclast recruitment is regulated by Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP). *Journal of Bone and Mineral Research* 15:S182 (abstract).
- Erben RG. 2001. Skeletal effects of androgen withdrawal. *Journal of Musculoskeletal & Neuronal Interactions* 1:225–233.
- Eriksen EF. 1986. Normal and pathological remodeling of human trabecular bone: three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. *Endocrine Review* 7:379–408.
- Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, Docherty AJ, Beertsen W. 1999. Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone. *FASEB Journal* 13:1219–1230.
- Frolik CA, Bryant HU, Black EC, Magee DE, Chandrasekhar S. 1996. Time-dependent changes in biochemical bone markers and serum cholesterol in ovariectomized rats: effects of raloxifene HCl tamoxifen estrogen and alendronate. *Bone* 18:621–627.
- Furuyama N, Fujisawa Y. 2000. Regulation of collagenolytic protease secretion through c-Src in osteoclasts. *Biochemical & Biophysical Research Communications* 272:116–124.

- Gao Y, Qian WP, Dark K, Toraldo G, Lin AS, Guldberg RE, Flavell RA, Weitzmann MN, Pacifici R. 2004. Estrogen prevents bone loss through transforming growth factor beta signaling in T cells. *Proceedings of the National Academy of Sciences USA* 101:16618–16623.
- Garnero P, Ferreras M, Karsdal MA, Nicamhlaobh R, Risteli J, Borel O, Qvist P, Delmas PD, Foged NT, Delaisse JM. 2003. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. *Journal of Bone and Mineral Research* 18:859–867.
- Garnero P, Gineys E, Schaffer AV, Seaman J, Delmas PD. 1998. Measurement of urinary excretion of nonisomerized and beta-isomerized forms of type I collagen breakdown products to monitor the effects of the bisphosphonate zoledronate in Paget's disease. *Arthritis & Rheumatism* 41:354–360.
- Garnero P, Sornay-Rendu E, Claustre B, Delmas PD. 2000. Biochemical markers of bone turnover endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. *Journal of Bone and Mineral Research* 15:1526–1536.
- Garrett IR. 2003. Assessing bone formation using mouse calvarial organ cultures. *Methods in Molecular Medicine* 80:183–198.
- Garrett IR, Chen D, Gutierrez G, Zhao M, Escobedo A, Rossini G, Harris SE, Gallwitz W, Kim KB, Hu S, Crews CM, Mundy GR. 2003. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. *Journal of Clinical Investigations* 111:1771–1782.
- Gelb BD, Shi GP, Chapman HA, Desnick RJ. 1996. Pycnodysostosis a lysosomal disease caused by cathepsin K deficiency. *Science* 273:1236–1238.
- Gertz BJ, Clemens JD, Holland SD, Yuan W, Greenspan S. 1998. Application of a new serum assay for type I collagen cross-linked N-telopeptides: assessment of diurnal changes in bone turnover with and without alendronate treatment. *Calcified Tissue International* 63:102–106.
- Glatt M, Pataki A, Evans GP, Hornby SB, Green JR. 2004. Loss of vertebral bone and mechanical strength in estrogen-deficient rats is prevented by long-term administration of zoledronic acid. *Osteoporosis International* 15:707–715.
- Gopala KV, Arunakaran J, Govindarajulu P, Srinivasan N. 2003. Effects of estradiol and progesterone on vertebral collagen glycosaminoglycans and phosphatases in ovariectomized adult rats. *Hormone & Metabolic Research* 35:137–141.
- Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I. 1999. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. *Journal of Bone and Mineral Research* 14:1654–1663.
- Gundberg CM. 2000. Biochemical markers of bone formation. *Clinical & Laboratory Medicine* 20:489–501.
- Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B. 1988. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. *APMIS* 96:857–881.
- Halleen JM, Alatalo SL, Suominen H, Chen GS, Janckila AJ, Vaananen HK. 2000. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. *Journal of Bone and Mineral Research* 15:1337–1345.
- Halleen JM, Hentunen TA, Karp M, Kakonen SM, Pettersson K, Vaananen HK. 1998. Characterization of serum tartrate-resistant acid phosphatase and development of a direct two-site immunoassay. *Journal of Bone and Mineral Research* 13:683–687.
- Halleen JM, Karp M, Viloma S, Laaksonen P, Hellman J, Kakonen SM, Stepan JJ, Holmes S, Vaananen H, Pettersson K. 1999. Two-site immunoassays for osteoclastic tartrate-resistant acid phosphatase based on characterization of six monoclonal antibodies. *Journal of Bone and Mineral Research* 14:464–469.
- Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP. 2000. Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. *Journal of Bone and Mineral Research* 15:710–720.
- Hanson DA, Weis MA, Bollen AM, Maslan SL, Singer FR, Eyre DR. 1992. A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. *Journal of Bone and Mineral Research* 7:1251–1258.
- Hauge E, Mosekilde L, Melsen F. 1999. Missing observations in bone histomorphometry on osteoporosis: implications and suggestions for an approach. *Bone* 25:389–395.
- Hauge EM, Mosekilde L, Melsen F, Frydenberg M. 2001. How many patients are needed? Variation and design considerations in bone histomorphometry. *Bone* 28:556–562.
- Henriksen K, Gram J, Schaller S, Dahl BH, Dziegel MH, Bollerslev J, Karsdal MA. 2004. Characterization of Osteoclasts from Patients Harboring a G215R Mutation in CIC-7 Causing Autosomal Dominant Osteopetrosis type II. *American Journal of Pathology* 164:1537–1545.

- Henriksen K, Gram J, Hoegh-Andersen P, Jemtland R, Ueland T, Dziegel MH, Schaller S, Bollerslev J, Karsdal MA. 2005. Osteoclasts from patients with autosomal dominant osteoporosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro but have decreased resorption capacity in vivo. *American Journal of Pathology* 167:1341–1348.
- Henriksen K, Karsdal M, Delaisse JM, Engsig MT. 2003. RANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2-dependent mechanism. *Journal of Biological Chemistry* 278:48745–48753.
- Henriksen K, Sorensen MG, Nielsen RH, Gram J, Schaller S, Dziegel MH, Everts V, Bollerslev J, Karsdal MA. 2006. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. *Journal of Bone and Mineral Research* 21:58–66.
- Hoegh-Andersen P, Tanko LB, Andersen TL, Lundberg CV, Mo JA, Heegaard AM, Delaisse JM, Christgau S. 2004. Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. *Arthritis Research & Therapy* 6:R169–R180.
- Hofstetter W, Wetterwald A, Cecchini MC, Felix R, Fleisch H, Mueller C. 1992. Detection of transcripts for the receptor for macrophage colony-stimulating factor c-fms in murine osteoclasts. *Proceedings of the National Academy of Sciences USA* 89:9637–9641.
- Holzer G, Noske H, Lang T, Holzer L, Willinger U. 2005. Soluble cathepsin K: a novel marker for the prediction of nontraumatic fractures? *Journal of Laboratory & Clinical Medicine* 146:13–17.
- Hornby SB, Evans GP, Hornby SL, Pataki A, Glatt M, Green JR. 2003. Long-term zoledronic acid treatment increases bone structure and mechanical strength of long bones of ovariectomized adult rats. *Calcified Tissue International* 72:519–527.
- Iida-Klein A, Lu SS, Yokoyama K, Dempster DW, Nieves JW, Lindsay R. 2003. Precision accuracy and reproducibility of dual X-ray absorptiometry measurements in mice in vivo. *Journal of Clinical Densitometry* 6:25–33.
- Ishikawa T, Nishigaki F, Christgau S, Noto T, Mo J, From N, Minoura K, Hirayama Y, Ohkubo Y, Mutoh S. 2004. Cartilage destruction in collagen induced arthritis assessed with a new biochemical marker for collagen type II C-telopeptide fragments. *Journal of Rheumatology* 31:1174–1179.
- Iwamoto J, Takeda T, Sato Y. 2005. Interventions to prevent bone loss in astronauts during space flight. *Keio Journal of Medicine* 54:55–59.
- Jiang Y, Zhao J, White DL, Genant HK. 2000. Micro CT and Micro MR imaging of 3D architecture of animal skeleton. *Journal of Musculoskeletal & Neuronal Interactions* 1:45–51.
- Kamel HK. 2005. Male osteoporosis: new trends in diagnosis and therapy. *Drugs & Aging* 22:741–748.
- Kang Q, An YH, Friedman RF. 1998. Mechanical properties and bone densities of canine trabecular bone. *Journal of Materials Science. Materials in Medicine* 9:263–267.
- Karsdal MA, Andersen TA, Bonewald L, Christiansen C. 2004. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes: MT1-MMP maintains osteocyte viability. *DNA Cell Biology* 23:155–165.
- Karsdal MA, Fjording MS, Foged NT, Delaisse JM, Lochter A. 2001. Transforming growth factor-beta-induced osteoblast elongation regulates osteoclastic bone resorption through a p38 mitogen-activated protein kinase- and matrix metalloproteinase-dependent pathway. *Journal of Biological Chemistry* 276:39350–39358.
- Karsdal MA, Henriksen K, Sorensen MG, Gram J, Schaller S, Dziegel MH, Heegaard AM, Christphersen P, Martin TJ, Christiansen C, Bollerslev J. 2005. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. *American Journal of Pathology* 166:467–476.
- Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, Delaisse JM, Foged NT. 2003. Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. *Journal of Biological Chemistry* 278:44975–44987.
- Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A, Delaisse JM, Foged NT. 2002. Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. *Journal of Biological Chemistry* 277:44061–44067.
- Kawazoe Y, Shiba T, Nakamura R, Mizuno A, Tsutsumi K, Uematsu T, Yamaoka M, Shindoh M, Kohgo T. 2004. Induction of calcification in MC3T3-E1 cells by inorganic polyphosphate. *Journal of Dentistry Research* 83:613–618.
- Ke HZ, Paralkar VM, Grasser WA, Crawford DT, Qi H, Simmons HA, Pirie CM, Chidsey-Frink KL, Owen TA, Smock SL, Chen HK, Jee WS, Cameron KO, Rosati RL, Brown TA, Dasilva-Jardine P, Thompson

- DD. 1998. Effects of CP-336 156 a new nonsteroidal estrogen agonist/antagonist on bone serum cholesterol uterus and body composition in rat models. *Endocrinology* 139:2068–2076.
- Ke HZ, Qi H, Chidsey-Frink KL, Crawford DT, Thompson DD. 2001. Lasofoxifene (CP-336 156) protects against the age-related changes in bone mass bone strength and total serum cholesterol in intact aged male rats. *Journal of Bone and Mineral Research* 16:765–773.
- Ke HZ, Qi H, Crawford DT, Chidsey-Frink KL, Simmons HA, Thompson DD. 2000. Lasofoxifene (CP-336 156) a selective estrogen receptor modulator prevents bone loss induced by aging and orchidectomy in the adult rat. *Endocrinology* 141:1338–1344.
- Kippo K, Hannuniemi R, Isaksson P, Lauren L, Osterman T, Peng Z, Tuukkanen J, Kuurtamo P, Vaananen HK, Sellman R. 1998. Clodronate prevents osteopenia and loss of trabecular connectivity in estrogen-deficient rats. *Journal of Bone and Mineral Research* 13:287–296.
- Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W, Rattan A, Scully S, Fletcher F, Juan T, Kelley M, Burgess TL, Boyle WJ, Polverino AJ. 2000. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. *American Journal of Pathology* 157:435–448.
- Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. *Cell* 93:165–176.
- Lang T, Leblanc A, Evans H, Lu Y, Genant H, Yu A. 2004. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. *Journal of Bone and Mineral Research* 19:1006–1012.
- Lark MW, Stroup GB, James IE, Dodds RA, Hwang SM, Blake SM, Lechowska BA, Hoffman SJ, Smith BR, Kapadia R, Liang X, Erhard K, Ru Y, Dong X, Marquis RW, Veber D, Gowen M. 2002. A potent small molecule nonpeptide inhibitor of cathepsin K (SB 331750) prevents bone matrix resorption in the ovariectomized rat. *Bone* 30:746–753.
- Lazner F, Gowen M, Pavasovic D, Kola I. 1999. Osteopetrosis and osteoporosis: two sides of the same coin. *Human & Molecular Genetics* 8:1839–1846.
- Leeming DJ, Koizumi M, Byrjalsen I, Li B, Qvist P, Tanko LB. 2006. The relative use of eight collagenous and noncollagenous markers for diagnosis of skeletal metastases in breast prostate or lung cancer patients. *Cancer Epidemiology, Biomarkers & Prevention* 15:32–38.
- Leloup G, Delaisse JM, Vaes G. 1994. Relationship of the plasminogen activator/plasmin cascade to osteoclast invasion and mineral resorption in explanted fetal metatarsal bones. *Journal of Bone and Mineral Research* 9:891–902.
- Li YP, Chen W, Liang Y, Li E, Stashenko P. 1999. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. *Nature Genetics* 23:447–451.
- Liesegang A. 2003. Possibilities of monitoring bone metabolism in ruminants – an overview of the methods in use. *Acta Veterinaria Scandinavica*. Supplementum 97:23–28.
- Liu CC, Kalu DN, Salerno E, Echon R, Hollis BW, Ray M. 1991. Preexisting bone loss associated with ovariectomy in rats is reversed by parathyroid hormone. *Journal of Bone and Mineral Research* 6:1071–1080.
- Ljusberg J, Wang Y, Lang P, Norgard M, Dodds R, Hultenby K, Ek-Rylander B, Andersson G. 2005. Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. *Journal of Biological Chemistry* 280:28370–28381.
- Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP. 1997. Prevalence of low femoral bone density in older U.S. adults from NHANES III. *Journal of Bone and Mineral Research* 12:1761–1768.
- Manolagas SC. 2000. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. *Endocrine Review* 21:115–137.
- Massey HM, Flanagan AM. 1999. Human osteoclasts derive from CD14-positive monocytes. *British Journal of Haematology* 106:167–170.
- Meier C, Meinhardt U, Greenfield JR, De Winter J, Nguyen TV, Dunstan CR, Seibel MJ. 2006. Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget's disease. *Clinical Laboratory* 52:1–10.
- Midy V, Plouet J. 1994. Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. *Biochemical & Biophysical Research Communications* 199:380–386.
- Moisio KC, Podolskaya G, Barnhart B, Berzins A, Sumner DR. 2003. pQCT provides better prediction of canine femur breaking load than does DXA. *Journal of Musculoskeletal & Neuronal Interactions* 3:240–245.

- Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G. 1999. Stimulation of bone formation in vitro and in rodents by statins. *Science* 286:1946–1949.
- Munns CF, Rauch F, Travers R, Glorieux FH. 2004. Three children with lower limb fractures and a mineralization defect: a novel bone fragility disorder? *Bone* 35:1023–1028.
- Nefussi JR, Boy-Lefevre ML, Boulekbache H, Forest N. 1985. Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. *Differentiation* 29:160–168.
- Niikura K, Takeshita N, Takano M. 2005. A vacuolar ATPase inhibitor FR167356 prevents bone resorption in ovariectomized rats with high potency and specificity: potential for clinical application. *Journal of Bone and Mineral Research* 20:1579–1588.
- Nishi Y, Atley L, Eyre DE, Edelson JG, Superti-Furga A, Yasuda T, Desnick RJ, Gelb BD. 1999. Determination of bone markers in pycnodysostosis: effects of cathepsin K deficiency on bone matrix degradation. *Journal of Bone and Mineral Research* 14:1902–1908.
- Nordstrom T, Rotstein OD, Romanek R, Asotra S, Heersche JN, Manolson MF, Brisseau GF, Grinstein S. 1995. Regulation of cytoplasmic pH in osteoclasts. Contribution of proton pumps and a proton-selective conductance. *Journal of Biological Chemistry* 270:2203–2212.
- Nuttall ME, Bradbeer JN, Stroup GB, Nadeau DP, Hoffman SJ, Zhao H, Rehm S, Gowen M. 1998. Idoxifene: a novel selective estrogen receptor modulator prevents bone loss and lowers cholesterol levels in ovariectomized rats and decreases uterine weight in intact rats. *Endocrinology* 139:5224–5234.
- Ogasawara T, Kawaguchi H, Jinno S, Hoshi K, Itaka T, Nakamura K, Okayama H. 2004. Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. *Molecular & Cell Biology* 24:6560–6568.
- Okabe R, Inaba M, Nakatsuka K, Miki T, Naka H, Moriguchi A, Nishizawa Y. 2004. Significance of serum CrossLaps as a predictor of changes in bone mineral density during estrogen replacement therapy; comparison with serum carboxyterminal telopeptide of type I collagen and urinary deoxypyridinoline. *Journal of Bone and Mineral Metabolism* 22:127–131.
- Onoe Y, Miyaura C, Ito M, Ohta H, Nozawa S, Suda T. 2000. Comparative effects of estrogen and raloxifene on B lymphopoiesis and bone loss induced by sex steroid deficiency in mice. *Journal of Bone and Mineral Research* 15:541–549.
- Palosaari H, Tasanen K, Risteli J, Larmas M, Salo T, Tjaderhane L. 2001. Baseline expression and effect of TGF-beta 1 on type I and III collagen mRNA and protein synthesis in human odontoblasts and pulp cells in vitro. *Calcified Tissue International* 68:122–129.
- Parfitt AM. 1982. The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. *Metabolic Bone Disease & Related Research* 4:1–6.
- Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. 1987a. Bone histomorphometry: standardization of nomenclature symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. *Journal of Bone and Mineral Research* 2:595–610.
- Parfitt AM, Simon LS, Villanueva AR, Krane SM. 1987b. Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with Iliac bone formation rates and comparison with total alkaline phosphatase. *Journal of Bone and Mineral Research* 2:427–436.
- Parikka V, Lehenkari P, Sassi ML, Halleen J, Risteli J, Harkonen P, Vaananen HK. 2001. Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts. *Endocrinology* 142:5371–5378.
- Peretz A, Siderova V, Body JJ, Dumon JC, Rozenberg S, Fellemans C, Fuss M, Bergmann P. 2003. Response to alendronate in osteoporotic women previously treated with pamidronate. *Maturitas* 44:111–115.
- Pogoda P, Priemel M, Schilling AF, Gebauer M, Catala-Lehnens P, Barvencik F, Beil FT, Munch C, Rupprecht M, Muldner C, Rueger JM, Schinke T, Amling M. 2005. Mouse models in skeletal physiology and osteoporosis: experiences and data on 14 839 cases from the Hamburg Mouse Archives. *Journal of Bone and Mineral Metabolism* 23(Suppl):97–102.
- Priemel M, Schilling AF, Haberland M, Pogoda P, Rueger JM, Amling M. 2002. Osteopenic mice: animal models of the aging skeleton. *Journal of Musculoskeletal & Neuronal Interactions* 2:212–218.
- Rawadi G, Vayssiére B, Dunn F, Baron R, Roman-Roman S. 2003. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. *Journal of Bone and Mineral Research* 18:1842–1853.
- Rhee Y, Won YY, Baek MH, Lim SK. 2004. Maintenance of increased bone mass after recombinant human parathyroid hormone (1–84) with sequential zoledronate treatment in ovariectomized rats. *Journal of Bone and Mineral Research* 19:931–937.

- Rico H, Valencia MJ, Villa LF, Hernandez ER, Seco C, Sanchez-Atrio A, Revilla M. 2000. Calcitonin versus clodronate in the prevention of ovariectomy-induced osteopenia in rats. *Clinical Rheumatology* 19:47–50.
- Riggs BL, Khosla S, Melton LJ III. 1998. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. *Journal of Bone and Mineral Research* 13:763–773.
- Rissanen JP, Reponen JJ, Hirsinummi R, Ravanti L, Kallio PJ, Halleen JM. 2005a. The Ratio of Osteoclast Activity/Osteoclast Number (CTX/TRACP 5b) is a Useful Parameter in Rat Orchidectomy Model. *Journal of Bone and Mineral Research* 20:SU161 (abstract).
- Rissanen JP, Suutari S, Ylönen S, Baugh M, Long C, Halleen JM. 2005b. The Ratio of Osteoclast Activity/Osteoclast Number (CTX/TRACP 5b) Improves the Interpretation of the Effects of Anti-Resorptive Treatment in Human Osteoclast Cultures. *Journal of Bone and Mineral Research* 20:U290(abstract).
- Robins SP, Woitge H, Hesley R, Ju J, Seyedin S, Seibel MJ. 1994. Direct enzyme-linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. *Journal of Bone and Mineral Research* 9:1643–1649.
- Rodan GA. 2003. The development and function of the skeleton and bone metastases. *Cancer* 97:726–732.
- Rodan GA, Martin TJ. 2000. Therapeutic approaches to bone diseases. *Science* 289:1508–1514.
- Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G, Pacifici R. 2001. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss *in vivo*. *Proceedings of the National Academy of Science USA* 98:13960–13965.
- Roodman GD. 1999. Cell biology of the osteoclast. *Experimental Hematology* 27:1229–1241.
- Rosenquist C, Fledelius C, Christgau S, Pedersen BJ, Bonde M, Qvist P, Christiansen C. 1998. Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. *Clinical Chemistry* 44:2281–2289.
- Rosenquist C, Qvist P, Bjarnason N, Christiansen C. 1995. Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. *Clinical Chemistry* 41:1439–1445.
- Scane AC, Francis RM, Sutcliffe AM, Francis MJ, Rawlings DJ, Chapple CL. 1999. Case-control study of the pathogenesis and sequelae of symptomatic vertebral fractures in men. *Osteoporosis International* 9:91–97.
- Schaller S, Henriksen K, Sveigaard C, Heegaard A, Hélix N, Stahlhut M, Ovejero MC, Johansen JV, Solberg H, Andersen TL, Hougaard D, Shiøt CB, Sørensen BH, Lichtenberg J, Christophersen P, Foged NT, Delaissé J, Engsig MT, Karsdal MA. 2004. The chloride channel inhibitor NS3736 prevents bone resorption in ovariectomized rats without changing bone formation. *Journal of Bone and Mineral Research* 19:1144–1153.
- Schaller S, Henriksen K, Hoegh-Andersen P, Sondergaard BC, Sumer EU, Tanko LB, Qvist P, Karsdal MA. 2005. In vitro, ex vivo and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? *Assay and Drug Development Technologies* 3:553–580.
- Schilling AF, Priemel M, Timo BF, Haberland M, Holzmann T, Catala-Lehnen P, Pogoda P, Blicharski D, Muldner C, Locherbach C, Rueger JM, Amling M. 2001. Transgenic and knock out mice in skeletal research. Towards a molecular understanding of the mammalian skeleton. *Journal of Musculoskeletal & Neuronal Interactions* 1:275–289.
- Seyedin SM, Kung VT, Daniloff YN, Hesley RP, Gomez B, Nielsen LA, Rosen HN, Zuk RF. 1993. Immunoassay for urinary pyridinoline: the new marker of bone resorption. *Journal of Bone and Mineral Research* 8:635–641.
- Shaama FA. 2005. An in vitro comparison of implant materials cell attachment cytokine and osteocalcin production. *West Indian Medical Journal* 54:250–256.
- Shalhoub V, Elliott G, Chiu L, Manoukian R, Kelley M, Hawkins N, Davy E, Shimamoto G, Beck J, Kaufman SA, Van G, Scully S, Qi M, Grisanti M, Dunstan C, Boyle WJ, Lacey DL. 2000. Characterization of osteoclast precursors in human blood. *British Journal of Haematology* 111:501–512.
- Shen V, Birchman R, Wu DD, Lindsay R. 2000. Skeletal effects of parathyroid hormone infusion in ovariectomized rats with or without estrogen repletion. *Journal of Bone and Mineral Research* 15:740–746.
- Shorey S, Heersche JN, Manolson MF. 2004. The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula. *Bone* 35:909–917.

- Shui C, Scutt A. 2001. Mild heat shock induces proliferation alkaline phosphatase activity and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. *Journal of Bone and Mineral Research* 16:731–741.
- Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, Derose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. 1997. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. *Cell* 89:309–319.
- Sondergaard BC, Henriksen K, Wulf H, Oestergaard S, Schurigt U, Bauer R, Danielsen I, Christiansen C, Qvist P, Karsdal MA. 2006a. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. *Osteoarthritis Cartilage* 14: 738–748.
- Sondergaard BC, Wulf H, Henriksen K, Schaller S, Oestergaard S, Qvist P, Tanko LB, Bagger YZ, Christiansen C, Karsdal MA. 2006b. Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. *Osteoarthritis Cartilage* 14: 759–768
- Srivastava AK, Bhattacharyya S, Castillo G, Wergedal J, Mohan S, Baylink DJ. 2000. Development and application of a serum C-telopeptide and osteocalcin assay to measure bone turnover in an ovariectomized rat model. *Calcified Tissue International* 66:435–442.
- Srivastava AK, Libanati C, Lane N, Baylink DJ. 2002. Development of a synthetic peptide-based tartrate-resistant acid phosphatase radioimmunoassay for the measurement of bone resorption in rat serum. *Journal of Bone and Mineral Metabolism* 20:66–72.
- Stroup GB, Lark MW, Veber DF, Bhattacharyya A, Blake S, Dare LC, Erhard KF, Hoffman SJ, James IE, Marquis RW, Ru Y, Vasko-Moser JA, Smith BR, Tomaszek T, Gowen M. 2001. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. *Journal of Bone and Mineral Reserach* 16:1739–1746.
- Suvanto-Luukkonen E, Risteli L, Sundstrom H, Penttinen J, Kauppila A, Risteli J. 1997. Comparison of three serum assays for bone collagen formation during postmenopausal estrogen-progestin therapy. *Clinica Chimica Acta* 266:105–116.
- Takahashi M, Wehrli FW, Wehrli SL, Hwang SN, Lundy MW, Hartke J, Borah B. 1999. Effect of prostaglandin and bisphosphonate on cancellous bone volume and structure in the ovariectomized rat studied by quantitative three-dimensional nuclear magnetic resonance microscopy. *Journal of Bone and Mineral Research* 14:680–689.
- Teramura K, Fukushima S, Iwai T, Nozaki K, Kokubo S, Takahashi K. 2002. Incadronate inhibits osteoporosis in ovariectomized rats. *European Journal of Pharmacology* 457:51–56.
- Torricelli P, Fini M, Giavaresi G, Giardino R, Gnudi S, Nicolini A, Carpi A. 2002. L-arginine and L-lysine stimulation on cultured human osteoblasts. *Biomedical Pharmacotherapy* 56:492–497.
- Traianedes K, Dallas MR, Garrett IR, Mundy GR, Bonewald LF. 1998. 5-Lipoxygenase metabolites inhibit bone formation in vitro. *Endocrinology* 139:3178–3184.
- Trechsel U, Stutzer A, Fleisch H. 1987. Hypercalcemia induced with an arabinoid in thyroparathyroidectomized rats. New model to study bone resorption in vivo. *Journal of Clinical Investigations* 80:1679–1686.
- Turner RT, Evans GL, Wakley GK. 1993. Mechanism of action of estrogen on cancellous bone balance in tibiae of ovariectomized growing rats: inhibition of indices of formation and resorption. *Journal of Bone and Mineral Research* 8:359–366.
- Tuukkanen J, Koivukangas A, Jamsa T, Sundquist K, Mackay CA, Marks SC Jr. 2000. Mineral density and bone strength are dissociated in long bones of rat osteopetrotic mutations. *Journal of Bone and Mineral Research* 15:1905–1911.
- Valenta A, Roschger P, Fratzl-Zelman N, Kostenuik PJ, Dunstan CR, Fratzl P, Klaushofer K. 2005. Combined treatment with PTH (1–34) and OPG increases bone volume and uniformity of mineralization in aged ovariectomized rats. *Bone* 37:87–95.
- Vanderschueren D, Van Herck E, Suiker AM, Visser WJ, Schot LP, Bouillon R. 1992. Bone and mineral metabolism in aged male rats: short and long term effects of androgen deficiency. *Endocrinology* 130:2906–2916.
- Vesterby A, Gundersen HJ, Melsen F. 1987. Unbiased stereological estimation of osteoid and resorption fractional surfaces in trabecular bone using vertical sections: sampling efficiency and biological variation. *Bone* 8:333–337.

- Visentin L, Dodds RA, Valente M, Misiano P, Bradbeer JN, Oneta S, Liang X, Gowen M, Farina C. 2000. A selective inhibitor of the osteoclastic V-H(+)ATPase prevents bone loss in both thyroparathyroidectomized and ovariectomized rats. *Journal of Clinical Investigations* 106:309–318.
- Wakley GK, Schutte HD Jr, Hannon KS, Turner RT. 1991. Androgen treatment prevents loss of cancellous bone in the orchidectomized rat. *Journal of Bone and Mineral Research* 6:325–330.
- Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. 1997. The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. *Endocrinology* 138:4013–4021.
- Wu J, Wang XX, Chiba H, Higuchi M, Takasaki M, Ohta A, Ishmi Y. 2003. Combined intervention of exercise and genistein prevented androgen deficiency-induced bone loss in mice. *Journal of Applied Physiology* 94:335–342.
- Yasuma T, Oi S, Choh N, Nomura T, Furuyama N, Nishimura A, Fujisawa Y, Sohda T. 1998. Synthesis of peptide aldehyde derivatives as selective inhibitors of human cathepsin L and their inhibitory effect on bone resorption. *Journal of Medical Chemistry* 41:4301–4308.
- Ylipahkala H, Rissanen J, Väänänen HK, Halleen JM. 2005a. Tartrate-resistant acid phosphatases 5b is a marker of osteoclast number in human osteoclast cultures. *Journal of Bone and Mineral Research* 20:SU303(abSTRACT).
- Ylipahkala H, Vääräniemi J, Fagerlund KM, Rissanen J, Alatalo SL, Vaananen HK, Halleen JM. 2005b. A possible role for cathepsin K as a regulator of tartrate-resistant acid phosphatase in osteoclasts. *Journal of Bone and Mineral Research* 20:SU272(abSTRACT).